Elec 206/Phys 302

Homework Assignment 1
Due on Friday, October 16, 2020, at 15:00
1 (20 pts) Give a complete proof of the identity $\sum_{i=1}^{3} \epsilon_{i j k} \epsilon_{i \ell m}=\delta_{j \ell} \delta_{k m}-\delta_{j m} \delta_{k \ell}$ following the steps discussed in the Lecture on Oct. 07, 2020, i.e., write down the details of the argument reducing the proof to the study of 9 specific cases and prove the validity of the identity for these 9 cases by calculating its left- and right-hand sides.

2 (10 pts) Establish the following identity for every $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$.
$\mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{c} \times(\mathbf{a} \times \mathbf{b})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})=\mathbf{0}$.
3 (20 pts) Calculate the gradient and Laplacian of the function, $f(\mathbf{r}):=r^{n}$, where $\mathbf{r}:=(x, y, z), r:=|\mathbf{r}|$, and n is a positive of negative integer.

4 (20 pts) Calculate the divergence of the vector-valued function, $\mathbf{A}(\mathbf{r}):=\frac{\mathbf{r}-\mathbf{a}}{|\mathbf{r}-\mathbf{a}|^{n}}$, where $\mathbf{r}:=(x, y, z)$ and \mathbf{a} is a constant vector.

5 (30 pts) Establish the following identities for every scalar function $f(\mathbf{r})$ and vectorvalued functions $\mathbf{A}(\mathbf{r})$ and $\mathbf{B}(\mathbf{r})$, where $\mathbf{r}:=(x, y, z)$
5.a) $\nabla \cdot[f(\mathbf{r}) \mathbf{A}(\mathbf{r})]=\nabla f(\mathbf{r}) \cdot \mathbf{A}(\mathbf{r})+f(\mathbf{r}) \nabla \cdot \mathbf{A}(\mathbf{r})$
5.b) $\nabla \times[f(\mathbf{r}) \mathbf{A}(\mathbf{r})]=\nabla f(\mathbf{r}) \times \mathbf{A}(\mathbf{r})+f(\mathbf{r}) \nabla \times \mathbf{A}(\mathbf{r})$
5.c) $\nabla \cdot[\mathbf{A}(\mathbf{r}) \times \mathbf{B}(\mathbf{r})]=\mathbf{B}(\mathbf{r}) \cdot[\nabla \times \mathbf{A}(\mathbf{r})]-\mathbf{A}(\mathbf{r}) \cdot[\nabla \times \mathbf{B}(\mathbf{r})]$

