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a b s t r a c t

We investigate the impact of supercoil period and nonzero supercoil formation energy on
the thermal denaturation of a circular DNA. Our analysis is based on a recently proposed
generalization of the Poland–Scheragamodel that allows the DNAmelting to be studied for
plasmids with circular topology, where denaturation is accompanied by formation of su-
percoils. We find that the previously obtained first-order melting transition persists under
the generalization discussed. The dependence of the size of the order-parameter jump at
the transition point and the associated melting temperature are obtained analytically.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There is a renewed interest in DNA denaturation [1] fueled by recent experiments that perform elastic measurements
at the level of a single molecule [2], perform force-induced denaturation [3] and monitor denaturation dynamics in real-
time [4]. Although some of these experimental observations can be addressed by standard models [5,6], some require a
representation of the DNA chain at a higher level of sophistication.
A signature of the DNAmolecule is its intrinsic twist, quantified at equilibrium by a stacking angle of approximately 36◦

between successive base pairs. In a circular B-DNA (plasmid) of L base pairs, it amounts to a topological invariant called the
linking number, i.e., the number of turns along the chain which is roughly L/Ω0 whereΩ0 ' 10.5 bps [7] is the helical pitch
of the relaxed B-DNA. The denaturation process in a plasmid is inevitably accompanied by bending and/or overtwisting on
the rest of the chain, as the entropic expulsion of twist from thedenaturation loops induces a torsional stress on the bordering
bound portions. Recent theoretical models which assume that the torsional stress is absorbed by an increase in the stacking
angles (either uniformly distributed [8] or otherwise [9]) suggest that the first-order melting transition observed by the
experiments [1] and predicted by theory [5,10–12] for a DNA chain with free ends should disappear in a circular topology.
Recent experiments suggest that a circular DNA also melts through a sharp transition [13,14] and at a temperature lower
than that of an identical sequence with free ends. The reduction in the melting temperature upon the imposed constraint is
associated with the fact that only a fraction of the bases are unbound at the high temperature phase.
We recently developed an extension of the Poland–Scheraga model [5] that incorporates an alternative mechanism for

the allocation of the turns entropically expelled from the denaturation loops [15]: a backbone deformation that amounts to
a finite ‘‘writhe’’. As is well known, the linking number of two closed curves (such as the two strands of the DNA chain) can
be decomposed as

Linking number = Twist+Writhe (1)
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in the limit where the separation between the two curves is small [16]. Let the two curves be parametrized by the variable
s, while their centerline and the unit tangent and normal vectors on it be given by Er(s), t̂(s), û(s), respectively. Then one can
show that (see, e.g., Ref. [17])

Writhe =
1
4π

∮
ds
∮
ds′ Et(s)× Et(s′) ·

Er(s)− Er(s′)
|Er(s)− Er(s′)|3

Twist =
1
2π

∮
ds Et(s) ·

[
Eu(s)×

dEu(s)
ds

]
. (2)

We here assume that the twist density of the dsDNA is fixed at its native value, i.e., the twist rigidity is infinite (while Refs. [8,
9] considered the other extremewhere the persistence length of the dsDNA is assumed infinite). While the latter extreme is
relevant for small torsional stress σ = 1Lk/L � 1 in short DNA rings where bending is costly, numerical simulations [18]
suggest that the former is a better approximation for DNA circles of about ten persistence lengths (∼kbps) or longer where
most of the extra linking number is stored in thewrithe. A full treatment of the problem involves a free energyminimization
that fixes both the amount of twist and writhe, as well as their sum at a given temperature (work in progress).
Even with the above simplification, the evaluation of the partition function as a sum over all closed curves with a fixed

linking number is a formidable task. Therefore, we further assume that the dominant configurations are thosewhere straight
segments of dsDNA are separated either by denaturation loops or by regions of uniformly interwound dsDNA chains forming
supercoils of arbitrary length that end in a sharp turn. Thewrithe integral in Eq. (2) is then approximately equal to thenumber
of crossings between the two interwound halves of the supercoil (more precisely, its average value over all projections).
Then, the condition in Eq. (1) reduces to a simple constraint involving the total length of the loops Lloop and that of supercoiled
regions Lsc given by

Lloop/Ω0 = Lsc/Ω1 (3)

whereΩ1 is the superhelical period varying between (1.7–5)×Ω0 [19] depending on the salt concentration as well as the
torsional stress. Since we are interested in a uniform solution and a narrow temperature interval, it is reasonable to consider
a constant value forΩ1. Also note that, we ignored above the correction to Lsc due to the end-loop of the supercoil, although
the energetic cost of supercoil initiation will be taken into account below.
The limit described above can be studied analytically by a generalization of the Poland–Scheragamodel [20]. The partition

function is a sum over configurations including denatured regions, supercoiled segments and relaxed dsDNA with arbitrary
order, number and sizes consistent with the total length of the chain and Eq. (1).
Let us express the number of base pairs in a loop by li, in a relaxed dsDNA by λi and in a supercoil by Λi, so that

Lloop =
∑
i li, Lsc =

∑
iΛi and Lbound = L − Lloop − Lsc =

∑
i λi. Then, a DNA segment given by the sequence

λ1 − l2 − λ3 −Λ4 − λ5 will be associated with the Boltzmann weight of a configuration can be expressed as

ωλ1Ω(2l2)ωλ3γωΛ4ωλ5

whereω, γ andΩ(l) are Boltzmann factors determined the energy parameters described below.We assume a fixed binding
energy Eb between the base pairs in double stranded regions, in the spirit of the Poland–Scheraga model. The possibility
of a different effective binding energy for supercoils associated with the winding of the two strands around each other is
considered in Ref. [20] and will also be ignored here. On the other hand, the initiation of a supercoil requires formation
of an end-loop which will be assigned a fixed energy cost of Esc > 0 per supercoil. Corresponding Boltzmann factors are
ω = exp(−Eb/kBT ) and γ = exp(−Esc/kBT ), respectively, where we have ω > 1 > γ > 0 at any finite temperature. For
the actual DNA molecule, Eb ' 10–25 kcal/mol depending on the base-pair type and the nearby bases. Esc depends on the
size of the end-loop and is not more than a few kcal/mol [19].
The melting transition is driven by the interplay between the energetic preference for base pair formation and the

entropic advantage of more flexible denaturation bubbles. It is well established [21] that the entropy of a denaturation
bubble composed of l subsequent unpaired complementary bases bounded by dsDNA on both sides is given by kBT logΩ(l),
where Ω(l) ≡ A sl/lc . c is a universal exponent >2, s and A are nonuniversal constants. The widely used DNA melting
simulation tool MELTSIM adopts s = e12.5 and A ' 10−4 [22], although these values are optimized for the Poland–Scheraga
model and probably need the modified for the present case.

2. Thermodynamics of the melting transition under fixed linking number

The ‘‘tight supercoil’’ limit of the model withΩ1 = Ω0 was analyzed earlier in Ref. [20], and a first-order transition was
obtained for c > 2. The transition in the model takes place at the critical temperature given by

ωc ∼
s

Aζc−1
(4)

where ζc is the Riemann-zeta function. We here extend this result to the case of an arbitrary superhelical period quantified
by the dimensionless parameter p = Ω1/Ω0 > 1 and obtain a closed-form expression for the order parameter at or near the
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melting temperature. For a supercoil diameter of 3.5 nm (limiting geometric value valid for high electrolyte concentrations)
and a winding angle of 55◦ [19], one finds p ' 1.7.
The canonical partition functionmust be evaluated under two constraints: a fixedDNA length and a fixed linking number.

Since thewrithe of a supercoil per period (Ω1) is the same as the twist of a dsDNAper pitch (Ω0), the condition for the linking
number conservation in Eq. (1) reads∑

i

Λi = p
∑
i

li (5)

where we assumed that the supercoils are not over- or undertwisted. Both constraints can be relaxed by defining associated
fugacities z and µ, respectively, and substituting

for dsDNA coils: ω→ (ωz),
for supercoils: ω→ (ωz/µ),
for loops: s→ (szµp).

After these substitutions, the grand sum Q (z, µ) for the system can be evaluated following the methodology in Ref. [20],
yielding in closed form

Q (z, µ) =
Ṽ (z, µ)

1− U(z, µ)Ṽ (z, µ)
where

Ṽ (z, µ) =
ωz

1− ωz − γω2z2/(µ− ωz)
U(z, µ) = AΦc(szµp).

Φc(x) is the polylog function which at x = 1 reduces to the Riemann-zeta function ζc . The total DNA length is set by

L = ∂ logQ/∂ log z

and the thermodynamic limit L→∞ is attained at the smallest value of z that satisfies

1− U(z, µ)Ṽ (z, µ) = 0

or (
1
ωz
− 1

)
− γ

ωz
µ− ωz

= AΦc(szµp). (6)

µ above is fixed such that the linking number is conserved (on average), i.e., ∂ logQ/∂ logµ = 0, which yields

γ
ωz

(µ− ωz)2
=
Ap
µ
Φc−1(szµp). (7)

Eqs. (6) and (7) generalize those in Ref. [20] to arbitrary superhelical period given by p and nonzero supercoil initiation
energy associated with γ > 1. Even though they are transcendental equations, an analytical investigation of the transition
is still possible.
Let us note that, in absence of the topological constraint in Eq. (5), one sets µ = 1 and recovers the earlier result for

the standard Poland–Scheraga model [11,20], i.e., a first-order phase transition for c > 2, a second-order transition for
1 < c ≤ 2 and a smooth crossover for c ≤ 1. With the constraint in Eq. (5), the model exhibits a phase transition (in the
limit L→ ∞) only if Eqs. (6) and (7) can be solved simultaneously at the point where the polylog function is nonanalytic,
i.e., at the phase transition point we have szcµ

p
c = 1. Substituting in Eq. (7), we get a quadratic equation forωczc/µc . Picking

the solution with smaller |zc | and considering the limit A/γ � 1. one finds

z1+pc =

(
1
sωpc

)(
Apζc−1
γ

)2p
,

µ1+pc =

(ωc
s

)( γ

Apζc−1

)2
(8)

where both zc and µc are real and positive. The melting temperature follows from substituting the critical fugacities in
Eq. (6) to get

ωc ∼
sγ
Apζc−1

⇒

{
szc = (s/ωc)3p/(1+p)

µc = (s/ωc)1/(1+p)
(9)
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and recalling that ω = exp[−Eb/kBT ]:

kBTc ∼
Eb

ln(Apζc−1/γ s)
. (10)

Note that Eb < 0 < A � 1 < γ s/pζc−1, so that Tc > 0. As expected, when the phenomenological parameters s and A
increase, the loop entropy gets more prominent and the melting temperature is reduced. By the same reasoning, melting
takes place at a higher temperature if the supercoil formation is penalized by an increase in Esc.
With a higher superhelical period and a fixed value of the order parameter (the fraction of bound pairs), a larger portion

of the dsDNA is found in supercoils in order to preserve the linking number. At first sight, it is not clear why this should
result in a decrease in the melting temperature. In order to address this question, one should look more carefully at the
order parameter near the transition.

3. The order parameter at and near the melting point

The order parameter is the average bound pair density given by

θ =
Lbound
L
= −

∂ log z
∂ logω

= −
ω

z
∂z
∂ω
. (11)

Eqs. (8) cannot be used to evaluate the derivative above, since they are only valid at the phase transition point and not
in its vicinity. Therefore we have to work with Eqs. (6) and (7) without imposing the condition szµp = 1. By evaluating
∂/∂ω [Eq. (7)] and using the identity dΦc(x)/dx = Φc−1(x)/x, one can derive θ in closed form as a function of the fugacities
and the phenomenological parameters as:

θ =
(µ− ωz)2 + γµω2z2

(µ− ωz)2 + (1+ 1/p)γµω2z2
. (12)

Note that 0 ≤ θ ≤ 1 as expected. Using Eq. (6), the order parameter at the transition temperature is found as

θ<c =
1+ pAωczcζc−1

1+ (1+ p)Aωczcζc−1
. (13)

At the high temperature regime one expects maximal denaturation, which in this model corresponds to a fraction p/(1+p)
of the DNA in supercoils while the rest is denaturated. Eq. (13) confirms that the order parameter is discontinuous at the
transition and becomes continuous only in the limit c → 2, consistent with Ref. [20]. On the other hand, as the superhelical
period increases, the transition point shifts to a regimewith a higher percentage of bound bases. This observation is in accord
with Eq. (10) where increasing p was shown to shift the transition to lower temperatures. A self-consistent determination
of the value of p requires a generalization of the present model which includes an energy penalty for the supercoils as a
function of the superhelical period. As a final note, strictly speaking, these results are valid only in the thermodynamic
limit L→∞. However, as is the case with the open-ended DNA chains and the Poland–Scheraga model, the theory should
be applicable to circular chains with tens of kbps or longer with a smoothening of the transition due to finite size effects
and sequence heterogeneity. The topological shift in the melting temperature has been indirectly measured through gel
electrophoresis [13,14], although it should also be directly observable by comparing the melting curves of identical DNAs in
circular and nicked forms.

Acknowledgements

We thank an anonymous referee for valuable suggestions. This work is dedicated to Prof. Nihat Berker on the occasion of
his 60th birthday. It is partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK) through
Grant No. TBAG-108T553.

References

[1] R.M. Wartell, A.S. Benight, Phys. Rep. 126 (1985) 67.
[2] T. Strick, J.-F. Allemand, V. Croquette, D. Bensimon, Prog. Biophys. Mol. Biol. 74 (2000) 115.
[3] U. Bockelmann, P. Thomen, B. Essevas-Roulet, V. Viasnoff, F. Heslot, Biophys. J. 82 (2002) 1537.
[4] G. Altan-Bonnett, A. Libchaber, O. Krichevsky, Phys. Rev. Lett. 90 (2003) 138101.
[5] D. Poland, H.A. Scheraga, J. Chem. Phys. 45 (1966) 1456; 45 (1966) 1464.
[6] M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62 (1989) 2755.
[7] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, et al., Molecular Biology of the Cell, Garland Science, NY, 2002.
[8] J. Rudnick, R. Bruinsma, Phys. Rev. E 65 (2002) 030902(R).
[9] T. Garel, H. Orland, E. Yeramian, 2004. arXiv:q-bio.BM/0407036.
[10] M.E. Fisher, J. Chem. Phys. 45 (1966) 1469.
[11] Y. Kafri, D. Mukamel, L. Peliti, Phys. Rev. Lett. 85 (2000) 4988;

Y. Kafri, D. Mukamel, L. Peliti, Eur. Phys. J. B 27 (2002) 135.



Author's personal copy

3006 A. Kabakçıoğlu et al. / Physica A 389 (2010) 3002–3006

[12] E. Carlon, E. Orlandini, A.L. Stella, Phys. Rev. Lett. 88 (2002) 198101;
M.S. Causo, B. Coluzzi, P. Grassberger, Phys. Rev. E 62 (2000) 3958.

[13] L. Yan, H. Iwasaki, Japan. J. Appl. Phys. 41 (2002) 7556–7559.
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